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FIG. 4. Experimental results, Nu vs H/D. 

An experimental study was carried out to investigate the 
heat transfer characteristics of constrained air jets impinging 
on a flat surface. The results showed that, the heat transfer 
coefficients increased with increasing the jet Reynolds num- 
ber Re and with decreasing the radius of the heat transfer 
surface r and the distance between the surface and the nozzle 
exit H. The data were successfully correlated by an empirical 
relationship, i.e. equation (5). 

ing empirical correlation is in the form, 

Nu = 0.216Reo685(H/D)-0-‘2(r/D)-0~*5. (5) 

In Figs. 3 and 4, the predictions of equation (5) are given by 
the solid lines. 

The results showed that, except for low values of r/D, 
constrained impinging jets are less capable of removing 
heat from flat surfaces compared to free, unconstrained, 
impinging jets under similar conditions. This was explained 
in terms of the resulting flow field in each case. 

The experimental results obtained in the present work for 
unconstrained jets were compared with those available in the 
literature for unconstrained jets [l-7]. It was generally found 
that, for high r/D values, lower heat transfer rates were 
obtained for constrained jets as compared to unconstrained 
jets for the same values of Re and H/D. Superimposed on 
Fig. 3 is the prediction of equation (2) for unconstrained jets 
for H/D equals 2 and r/D equals 8, 4 and 2, respectively. 
These observations can easily be explained in terms of the 
resulting flow field near the heat transfer surface in each case. 
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constraining wall. Accordingly, boundary-layer stagnation 
and separation will take place near that wall. It is obvious 
that this change of the flow field will result in less heat 
removal from the surface. However, for low values of r/D 
this effect diminishes. As shown in Fig. 3, for r/D equals 2, 
equations (2) and (5) predict similar values of Nu. 
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1. INTRODUCTION 

THE COMBINED heat and mass transfer process taking place 
in film absorption has received growing attention in recent 
years and has been analyzed in several articles [l-6]. In the 
absorption process, encountered in numerous applications 
in chemical technology, the mass transfer is often ac- 
companied by a significant heat effect, particularly when 
the absorbate is a vapor with a large latent heat. As was 
demonstrated in the above works, the heat and mass transfer 
processes are coupled in this case, and the concentration and 
temperature distributions are interdependent. 

In all the above studies, the thermal effects due to diffusion 
[7] (also known as interdiffusion) were assumed to be neg- 
ligible. Indeed, this assumption is quite realistic in most cases 

of practical importance. Yet, interdiffusion may become 
important for films with short exposure time [8] where large 
temperature and concentration gradients are present. Then, 
an additional term in the energy equation, expressing the 
energy transport due to the diffusive mass flux, may affect 
the solution. 

This analysis considers the falling film model with the 
governing equations in their complete form, to evaluate the 
contribution of the interdiffusion. A short-exposure time 
solution is obtained by a similarity method. 

2. MODEL AND EQUATIONS 

Figure 1 describes schematically the system under con- 
sideration. A film of liquid solution, composed of substances 
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NOMENCLATURE 

C, Co, C, concentration, initial concentration and r, r,, T, temperature, initial temperature and 
equilibrium concentration ofabsorbate in equilibrium temperature of solution [“C] 
solution [mol mm ’ solution] n, no flow velocity, velocity near interface [m s-‘1 

% specific heat of liquid solution [J kg _ ’ “C- ‘1 .x coordinate in direction of flow fm] 

C, Nusselt number deviation factor, equation Y coordinate in direction perpendicular to Aow [ml 
(24) dimensionless] Z interdi~usi~n parameter, equation (I I) 

D, D* molecular, turbulent diffusion coefEcient of [dimensionless]. 
absorbate in solution [m’s ‘1 

I!& heat of absorption of substance II in solution Greek symbols 
[J mol- ‘] sf thermal diffusivity of liquid solution, kjpc, 

&“I mass transfer coefficient from interface ta bulk [m’ s- ‘1 
[m s- ‘1 Y normalized concentration, equation (8) 

hr heat transfer coefficient from interface to bulk [dimensionless] 

[Wm m2 “c-9 II similarity coordinate, YiZ~!‘.~Dju,, 
k, k* molecular, turbulent thermal conductivity of [dimensionless] 

liquid solution [W m- ’ “C- ‘1 0 normalized temperature, equation (8) 

$ 
enthalpy of liquid solution [J kg-- ‘1 [dimensionless] 
Lewis number, D/a [dimensionless] 1 normalized heat of absorption, 

Nu, Nusselt nmber, &x/k (dimensionless] fD(C, - CJl?J/[k( T, - T,,)] [dimensionless] 

Sh.1 Sherwood number, &.,x/D [dimensionless] P density of liquid [kg m-‘3. 

t 
-c 0.2 

I I I I I I I I 

-1-O -06 -0-2 0 0.2 0.6 

/ 

exerted on the Liquid by the vapor ; (3) vapor pressure equi- 
librium exists between the vapor and liquid at the interface ; 
and (4) heat transfer in the vapor phase is negligible com- 
pared to that in the liquid phase. 

Under these assumptions, the simultaneous heat and mass 
transfer process in the system at steady-state is described by 
the diffusion and energy equations : 

where diffusion and heat conduction in the x-direction have 
been neglected with respect to convection. Here II is the 
steady-state component of the flow velocity, D+ and K* are 
the generahzed mass diffusivity and thermal conductivity, 
respectively, including, in the case of turbulent flow, the effect 
of turbulent eddies, and i is the enthalpy of the solution. The 
second term on the RHS of the energy equation expresses 
the interdiffusion, namely, the flux of energy brought about 
by mass transfer. 

z 

The product (pi) in equation (2) expresses the volumetric 
enthalpy (enthaipy per unit voiume) of the film, and is a 
function of T and C. By expressing the x derivative of (pi) 
on the LHS of (2) in terms of x-derivatives of T and C, . _ . 

FIG. I. Schematic description of a falling film. T yprcal tem- 
perature, concentration and velocity profiles are shown. 

multiplying equation (1) by [i?(pi)@CjT and subtracting From 
(2), we obtain a simp~jfied form of the energy equation : 

I (absorbent) and II (absorbate), flows down over an inclined 
surface, The film is in contact with stagnant vapor of sub- 
stance II at constant pressure P,. At x = 0, the liquid film is 
at a uniform temperature T,, and composition Co cor- 
responding to an equilibrium vapor pressure lower than P,. 
This results in absorption taking place at the liquid--vapor 
interface, with the substance absorbed diffusing into the film ; 
the heat of absorption produces a simultaneous heat transfer 
process. The flow may be laminar or turbulent. 

In order to keep the treatment as general as possible, some 
of the assumptions made in earlier studies [5, 61 have been 
relaxed here. It is assumed that : (1) the film is thin and the 
flow is essentialfy one-dimensjonai ; (2) no shear forces are 

For most liquids, the dependence of the enthalpy on tem- 
perature is almost linear over a significant range of the latter. 
Thus, the volumetric enthalpy may be expressed as : 

WI = w,(T- ToI (4) 

where cr is the specific heat and T0 is chosen as the reference 
temperature at which the enthalpy is taken as zero. The 
density and specific heat are practically independent of tem- 
perature, but depend on concentration. Then, from (3): 
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For most absorbent solutions the density and specific heat 
vary strongly with concentration, but the dependence of 
a(pc,)/X on concentration is weak. It is therefore reasonable 
to assume this quantity to be constant with y, and equation 
(5) becomes : 

(6) 

It is convenient to introduce in the equations a dimen- 
sionless form of the temperature and concentration : 

T-T, c-co 
Q=-. ~ 

T,-To’ y = c-c, 
(7) 

where T, is the equilibrium temperature of the solution at 
concentration C, with the vapor, and C, is the concentration 
of the solution at temperature T, in equilibrium with the 
vapor, both limiting values to those actually obtained in 
the simultaneous heat and mass transfer process [5, 61. The 
diffusion and energy equations become : 

Boundary conditions at the interface require vapor pressure 
equilibrium between the vapor and liquid phases, and a 
match between the heat and the mass fluxes. This depends 
on the thermodynamic property relations of the particular 
fluids at hand. For a linear absorbent [5, 61 having a linear 
temperature-concentration characteristic and a constant 
heat of absorption, these conditions become : 

B+y=1 

a0 _,/$ 
ay 3.r 1 

aty=O 

where 1 is a dimensionless heat of absorption. 

(lOa) 

(lob) 

3. SOLUTION 4. RESULTS AND DISCUSSION 

The term in square brackets on the RHS of equation (9) : The results of the solution show the temperature and con- 
centration distributions in the film to depend on three dimen- 
sionless parameters: the Lewis number Le, the normalized 
heat of absorption 1, and the interdiffusion parameter Z. 
These three quantities affect the value of the constant K,, 
which may be calculated from equation (20). The integral 
in this equation has been evaluated numerically. For the 
particular case where Le = 1, the integral (19) can be cal- 
culated analytically to give : 

s 

‘1 
f(q) = ez+rf(t) e-‘* dt = ~ h [ezKFrf(q) - 11, 

2ZK, 
(21) 

0 

z = 
[ 
cc- a a(pc,) 

~5 ac 1 (11) 

is a dimensionless parameter describing a property of the film 
which reflects its sensitivity to interdiffusion. Other factors 
influencing the latter are the concentration and temperature 
gradients, as evident from equation (9). These gradients are 
particularly large at the entrance region of the film, where 
they are confined to a thin, developing boundary layer. In 
this study, we will therefore concentrate on a solution for 
the entrance region (short exposure time [8]). It will be shown 
that in this case an analytical similarity solution may be 
obtained. 

At the thin boundary layer of the entrance region, the flow 
velocity is approximately uniform across the thickness ; u in 
equations (8) and (9) may be replaced by u,-the velocity at 
the interface. Also, k* and D* become k and D, respectively. 
The equations are to be solved with the interface boundary 
condition (10) and also : 

T = To (or 6 = 0) 

C = Co (or y = 0) { 

atx=O (12a) 

aty-+co. (12b) 

Introducing the similarity variable T) = y/2 a, equa- 
tions (8) and (9) may be rewritten as : 

yU + 2qy’ = 0 (13) 

$+2~8.+ZB’y’=O (14) 

where a prime denotes differentiation with respect to n. 
Equation (13) may be readily solved for y. Integrating 

twice with respect to g and applying the boundary condition 
(12b), we obtain : 

Y = K,[l -erfWl (15) 

where K, is a constant of integration still to be determined. 
Similarly, equation (14) may be written in the form: 

dQ 
s_= -Le(2n+Zy’)dn (16a) 

yielding after integration : 

O’= K2exp[-ti(r7’+Zy)]. (16b) 

Applying the interface boundary condition (lob) (0’ = ly’ at 
n = 0) makes it possible to evaluate K, in terms of K,, and 
hence : 

O’= --exp{Le[ZK,erf(n)-n’]}. 

& 

(17) 

Integration again yields an expression for 0 with a new con- 
stant of integration, which may be calculated by applying 
the boundary condition (lOa). Thus : 

f3= I-K,--I(q) 

6 
(18) 

where 

s 

‘I 
I(?) = exp {Le[ZK, erf (t) - t’]} dt (19) 

0 

and the remaining constant K, may be determined from the 
boundary condition (12a) : 

e(l-K1)- m s AK, o 
exp {Le[ZK, erf (t) - t’]} dt = I(co). 

(20) 

Thus, a complete solution for the distribution of the dimen- 
sionless concentration y and temperature 6 is given by equa- 
tions (15) and (18). 

It is also evident from equations (19) and (20) that for small 
Z the dependence of Z(n) on K, and Z is very weak. For 
Z = 0 it is easy to show that the solution reduces to that with 
no interdiffusion [5, 61. 

The results for the temperature and concentration profiles 
make it possible to calculate the heat and mass transfer 
coefficients and hence the Nusselt and Sherwood numbers. 
Thus : 

N,, _ h+ _ x -k(aT/Wo 
x 

k k T(O)- To = [&;1,,1$ 

(23) 
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liquid interface. Thus, while the heat transfer coefficient 
improves with decreasing 1, and increasing Le, the overall 
heat effect associated with the absorption process is reduced 
under this condition. 
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1. INTROOUCTION 2. FORMULATION AND ANALYSIS 

THE DESCRIPTION of thermal convection in a porous medium 
is mainiy based on Darcy’s law, which includes boundary 
and inertial effects [I]. The global effects of the fluid are 
derived by using volume average techniques [2-31. Linear 
stability theory of the steady state may predict the onset of 
thermal convection at the marginal state [4], while nonlinear 
stability theory can differentiate the flow patterns and deter- 
mine the subcritical instability [5%7]. Empirically, the cell 
patterns, first appearing at the marginal state, continue to 
manifest the same patterns in the weakly nonlinear stability 
state [S]. Foster [9] treats the thermal convection of transient 
state as an initial value problem. Amplification theory. 
requiring the empirically determined initial conditions, is 
applied to predict the critical time of thermal convection 
[lo--131. 

The dimensionless governing equations and conditions of 
the perturbed state, assuming the Boussinesq approximation, 
are 

The onset of thermal convection of both steady and tran- 
sient states in a porous medium rotating with an angular 
frequency is considered. Both upper and lower boundaries 
are free and fixed at a constant temperature T,. The initial 
temperature distribution is nonlinear and is increased from 
the below at a constant rate c. 

a 

i > 
a-DZ T=O 

M’ = L.&Q = D4,v z 0 = 0, at z zz (),I (4) 

T(0, t) = ct. T( 1, t) = 0 and T(z, 0) = 2, (l-zb (5) 

The solution for the basic temperature, from equations (3) 
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